Tetrabutylammonium and Polymer-supported Dihydrogentrifluoride: New Hydrofluorinating Reagents for Electrophilic Alkynes

Patrice Albert and Jack Cousseau*

Groupe de Recherche de Chimie Organique et Bio-organique, Institut de Recherches Scientifiques et Techniques, Université d'Angers, Bd Lavoisier, 49045 Angers Cedex, France

Tetrabutylammonium and polymer-supported dihydrogentrifluoride are readily accessible reagents which allow addition of HF to activated carbon-carbon triple bonds, thus leading to functional fluoroalkenes in good yields.

Functionalised fluoroalkenes, which are attractive molecules owing to their biological activity, 1,2 are generally obtained in multi-step sequences. $^{3-5}$ The addition of HF to activated $-C\equiv C-$ bonds should make similar compounds more accessible. However neither anhydrous HF, 6 except when treated with CF₃C $\equiv CH$, 7 nor amine-HF complexes investigated by Olah⁸ and Yoneda⁹ bring about this addition.

The $H_2F_3^-$ ion, in which the $H \cdot \cdot \cdot F$ hydrogen bonds appear to be much weaker than in HF_2^- , 10 might be expected to provide both the nucleophilic F^- and the electrophilic H^+ species. We report here that $Bu^n_4N^+H_2F_3^-$ and $P^+H_2F_3^-$ (P^+ = a polymeric cation from a macroreticular anion-exchange resin, e.g. Amberlyst A 26 or Amberlite IRA 900) can be used as efficient hydrofluorinating reagents towards electrophilic alkynes.

These stable and easily handled new dihydrogentrifluoride salts are obtained using a very simple method. The corresponding fluorides, Bun₄N+F- dissolved in 1,2-dichloroethane (DCE), or the solid resin P+F-, are stirred in the presence of an aqueous saturated solution of HF-KF (2:1 ratio) (or HF-KHF₂). HF phase-transfer occurs and leads to the dihydrogentrifluoride salts which, after separation of the aqueous layer, are isolated from DCE (this solvent being added in the case of P+H₂F₃-) after distillation of the water-DCE azeotrope.

 $Bu^n_4N^+H_2F_3^-$ and $P^+H_2F_3^-$ react smoothly at moderate temperatures with bis-activated A-C=C-A or mono-activated

R-C=C-A acetylenic bonds, generating the desired addition of HF according to equation (1). In all cases the reaction stops at the alkene stage; generally a mixture of the Z- and E-isomers of the fluoro-adduct A-CF=CH-A or R-CF=CH-A is obtained in good yields, a bigger proportion of syn-adduct being formed from the polymer-supported reagent. The results are summarized in Table 1.

R = alkyl or phenyl; A = nitrile, ester, ketone, aldehyde

The $H_2F_3^-$ ion seems to play a fundamental role in this reaction. We have observed that Olah's reagent does not add HF to $MeO_2CC\equiv CCO_2Me$ and that this ester is not readily transformed into $Z\text{-}MeO_2CCF\equiv CHCO_2Me$ (max. 10—15%) under the action of $Bu^n_4N^+HF_2^-$. On the other hand, the dihydrogentrifluoride salts do not induce any addition of HF to simple alkynes which easily produce *gem*-difluoro alkanes by reaction with pyridine–HF, $(1:10 \text{ mol. ratio}).^8$ These results may be explained by the good nucleophilicity of the $H_2F_3^-$ ion, and the relatively weak $H\cdot \cdot \cdot \cdot$ F hydrogen bonds in this species.

In the aliphatic mono-activated series, a side-reaction occurs which is probably due to the slightly basic power of the $H_2F_3^-$ ion. The ester $Bu^nC\equiv CCO_2Me$ leads to the two isomers

Table 1. Formation of fluoro-adducts A-CF=CH-A and R-CF=CH-A from acetylenic compounds A-CEC-A and R-CEC-A.

Reaction with Bun ₄ N+H ₂ F ₃ -a	Read	ction	with	Bun₄N	+H ₂ F ₂ -a
---	------	-------	------	-------	-----------------------------------

Reaction with P+H₂F₃-b

Acetylenic compound	Reaction time/h	Overall yield/%	Z-adduct/%	E-adduct/%	Reaction time/h	Overall yield/%	Z-adduct/%	E-adduct/%
MeO ₂ CC≡CCO ₂ Me	9	90	100	0	30	80	81	19
PhC≡CCOPh	50	53	100	0	c			
C ₇ H ₁₅ C≣CCN	7	95	70	30	30	95	34	66
Bu ⁿ C≡CCO ₂ Me	24	90d	42	58	16	78ª	35	65
PhC≡CCO ₂ Me	21	75	91	5	24	85	88	12
PhC≘CCHO	4.5	75	91	9	4	62	83	17

^a After the preparation of $Bu^n_4N^+H_2F_3^-$ most of the DCE is evaporated under vacuum, the alkyne is added (onium salt: alkyne 2:1), then this mixture is heated (60 °C for the dimethyl butynedioate, 110-120 °C for the other alkynes). ^b $P^+H_2F_3$: alkyne 2:1 molar ratio, CCl₄ as solvent with dimethyl butynedioate (60 °C) and n-octane as solvent with the other alkynes (110-120 °C); the concentration of the alkyne was 1 m. No difference is observed between the Amberlyst A 26 or the Amberlite IRA 900 resins. ^c This ketone does not add HF when $P^+H_2F_3^-$ is used. ^d This yield includes the formation of the ester $P^nCH=CFCH_2CO_2Me$.

BunCF=CHCO₂Me and PrnCH=CFCH₂CO₂Me (relative proportions 5:3); this last compound is likely to be formed by addition of HF to the allenic ester PrnCH=C=CHCO₂Me¹¹ after isomerization of BunC=CCO₂Me through a well-known basic prototropy. This product of this process is observed only as a trace amount from the nitrile C₇H₁₅C=CCN.

We thank Professor J. E. Guerchais, University of Brest, and Dr. A. Pagelot, Bruker Spectrospin S.A., Wissembourg, for ¹⁹F n.m.r. studies.

Received, 12th March 1985; Com. 329

References

- H. Gershon and L. Shanks, J. Med. Chem., 1977, 20, 606; J. Pharm. Sci., 1978, 67, 578.
- 2 T. Taguchi, T. Takigawa, Y. Tawara, T. Morikawa, and Y. Kabayashi, *Tetrahedron Lett.*, 1984, **25**, 5689.
- 3 M. S. Raasch, R. E. Miegel, and J. E. Castle, *J. Am. Chem. Soc.*, 1959, **81**, 2678.

- 4 B. L. Dyatkin, E. P. Mochalina, E. P. Lur'e, and I. L. Knunyants, USSR Patent, 503 850, 1976; Chem. Abstr., 1976, 84, 135130x.
- 5 J. P. Gillet, R. Sauvêtre, and J. F. Normant, Synthesis, 1982, 297.
- W. A. Sheppard and C. M. Sharts, 'Organic Fluorine Chemistry,'
 W. A. Benjamin, New York, 1969; R. D. Chambers, 'Fluorine in Organic Chemistry,'
 Wiley-Interscience, New York, 1973;
 M. R. C. Gerstenberger and A. Haas, Angew. Chem., Int. Ed. Engl., 1981, 20, 647.
- 7 R. N. Haszeldine, J. Chem. Soc., 1952, 3490.
- 8 G. A. Olah, J. T. Welch, Y. D. Vankar, M. Nojima, I. Kerekes, and J. A. Olah, J. Org. Chem., 1979, 44, 3872.
- N. Yoneda, T. Abe, T. Fukuhara, and A. Suzuki, *Chem. Lett.*, 1983, 1135; N. Yoneda, S. Nagata, T. Fukuhara, and A. Suzuki, *ibid.*, 1984, 1241.
- 10 K. M. Harmon and I. Gennick, J. Mol. Struct., 1977, 38, 97.
- 11 J. C. Chalchat, F. Théron, and R. Vessière, C. R. Hebd. Seances Acad. Sci., 1971, 273, 763.
- 12 J. Cymerman Craig and M. Moyle, J. Chem. Soc., 1963, 4403; F. Théron, M. Verny, and R. Vessière, in 'The Chemistry of the Carbon-Carbon Triple Bond,' ed. S. Patai, Wiley, New York, 1978, ch. 10, p. 385.